International Journal of Engineering, Science and Mathematics

Vol. 7, Issue 2, February 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Semi Parallel and Weyl-Semi Parallel Hypersurface of Tachibana Manifold

* Prabhat Narayan Singh

**S. K. Dubey

Key words :	Abstract
Semi Parallel Hypersurfa Weyl-Semi Para Hypersurface.	
	— Copyright © 201x International Journals of Multidisciplinary Research Academy. All rights reserved.

Author's

*Department of Mathematics ,St. Andrew's College, Gorakhpur, India

1. Introduction

We consider an isometric immersion $f:M\to M$ and let 'h' is second fundamental form and ∇ is Vander-Waerden Bortolotti connection on M, then J. Deprez defined the immersion to be semi-parallel if

$$R(X,Y)h = (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})h = 0, \tag{1.1}$$

^{**}Department of Mathematics ,ITM, GIDA, Gorakhpur, India

holds for all vector field tangent to M. Here 'R' is curvature tensor of connection ∇ . In [1] and [2] J. Deprez studied semi-parallel immersion in real space form. In [3], Ü Lumiste has proved that a semi-parallel submanifold is the second order envelope of the family of parallel submanifold. In [4] hypersurfaces of sphere and hyperbolic space has been studied by F. Dillen. He proved that semi-parallel hypersurfaces are flat surfaces with parallel Weingarten endomorphism or rotation hypersurface of certain helices. In [5] A. C. Asperti, C. A. Lobos and F. Mercuri defined that submanifolds satisfying

$$R.h = L_h Q(g, h), \tag{1.2}$$

are called pseudoparallel. Here $\,L_{\rm h}\,$ is some function on submanifold.

In [6] C. Ozgur defined the submanifold to Weyl-semi parallel if they satisfy

$$C.h = 0, (1.3)$$

where 'C' denotes the Weyl conformal curvature tensor. Generalization of Weyl semi-parallel condition has been studied in [6]. Here submanifolds satisfying

$$C.h = L_h.Q(g,h),$$
 (1.4)

has been studied.

In this paper we have studied semi-parallel, pseudo-parallel and Weyl semi-parallel para-Sasakian hypersurface of a Tachibana manifold.

2. Para-Sasakian Manifold

An (2n+1)-dimensional differentiable manifold M is called almost para contact manifold if it admits an almost para contact structure (ϕ, ξ, η) consisting of a (1,1) tensor field ϕ , a vector field ξ and a 1-form η satisfying

$$\phi^2 = I - \eta \otimes \xi, \tag{2.1}$$

$$\eta(\xi) = 1, \tag{2.2}$$

$$\eta.\phi = 0,$$
(2.3)

$$\phi(\xi) = 0. \tag{2.4}$$

Let 'g' be compatible-Riemannian metric with (ϕ, ξ, η) , i.e.

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \tag{2.5}$$

or equivalently

$$g(\phi X, Y) = g(X, \phi Y), \tag{2.6}$$

and

$$g(X,\xi) = \eta(X), \tag{2.7}$$

where X, Y are arbitrary vector fields on M then M is called an almost para contact Riemannian manifold with an almost para contact Riemannian structure (ϕ, ξ, η, g) .

An almost para contact Riemannian manifold is called para-Sasakian manifold if it satisfies

$$(\nabla_{\mathbf{X}}\phi)\mathbf{Y} = \mathbf{g}(\mathbf{X}, \mathbf{Y})\boldsymbol{\xi} - \boldsymbol{\eta}(\mathbf{Y})\mathbf{X} + 2\boldsymbol{\eta}(\mathbf{X})\boldsymbol{\eta}(\mathbf{Y})\boldsymbol{\xi},\tag{2.8}$$

where $X,Y\in T(M)$, ∇ is Levi-Civita connection of the Riemannian metric.

From above equations, we can get

$$\nabla_{\mathbf{X}}\xi = \phi(\mathbf{X}) \tag{2.9}$$

$$(\nabla_{\mathbf{X}} \eta) \mathbf{Y} = \mathbf{g}(\mathbf{X}, \phi \mathbf{Y}) = (\nabla_{\mathbf{Y}} \eta) \mathbf{X}. \tag{2.10}$$

In an para-Sasakian manifold M, the curvature tensor R, the Ricci tensor S and Ricci map S satisfy

$$R(X, Y)\xi = \eta(X)Y - \eta(Y)X,$$
 (2.11)

$$S(Y,\xi) = -2n\eta(Y),$$
 (2.12)

$$'S(\xi) = -2n\xi,$$
 (2.13)

$$\eta(R(X,Y)Z) = g(X,Z)\eta(Y) - g(Y,Z)\eta(X),$$
 (2.14)

$$\eta(R(X,Y),\xi) = 0,$$
 (2.15)

$$\eta(R(\xi, X)Y) = \eta(X)\eta(Y) - g(X, Y).$$
 (2.16)

We also know that differentiable manifold M is called η Einstein manifold if

$$S(X, Y) = a.g(X, Y) + bn(X).n(Y),$$
 (2.17)

where a, b are some functions on M.

3. Hypersurface of Tachibana Manifold

An (2n+2)-dimensional differentiable manifold M is called an almost Tachibana manifold if there exist a tensor field \mathcal{Y} of type (1, 1), Riemannian metric G satisfying

$$J^{2}X^{0} = -X^{0}, (3.1)$$

$$G(\sqrt{X'}, \sqrt{Y'}) = G(X', Y'), \tag{3.2}$$

$$(\mathring{\nabla}_{\otimes J})\mathring{Y} + (\mathring{\nabla}_{\otimes J})\mathring{X} = 0, \tag{3.3}$$

where $\sqrt[6]{}$ is Levi-Civita connection on $\sqrt[6]{}$, and $\sqrt[6]{}$, are arbitrary vector fields on $\sqrt[6]{}$.

In almost Tachibana manifold, we have

$$N(X,Y) = -4J((\mathring{\nabla}_{0}^{\prime}J)\mathring{Y}). \tag{3.4}$$

An almost Tachibana manifold on which Nijenhuis tensor 'N' vanishes is called Tachibana manifold [7].

In a Tachibana manifold, we have

$$(\mathring{\nabla}_{\mathscr{V}}^{\mathsf{M}}J)\mathring{Y}^{\mathsf{M}} = 0. \tag{3.5}$$

Now, let us suppose that para-Sasakian manifold 'M' is isometrically embedded into a Tachibana manifold 'M'. Then by Gauss and Weingarten equation, we get

$$\nabla_{\mathcal{N}} = \nabla_{\mathbf{X}} \mathbf{Y} + \mathbf{H}(\mathbf{X}, \mathbf{Y}) \mathbf{N}, \tag{3.6}$$

$$\overset{\bullet}{\nabla}_{\overset{\bullet}{N}} \overset{\bullet}{\nabla} = \overset{\bullet}{\nabla}_{X} Y + H(X, Y).N, \tag{3.7}$$

where 'H' denotes second fundamental form and 'A' is shape operator. We have

$$G(X', Y') = g(X, Y),$$
 (3.8)

$$G(X, N) = 0, (3.9)$$

$$G(N, N) = 1,$$
 (3.10)

$$H(X, Y) = g(AX, Y).$$
 (3.11)

Here X is restriction of \Re^0 form \Re^0 to M and N is normal vector field to M.

We also know that a submanifold is totally geodesic iff second fundamental form vanishes.

From now we assume that M is hypersurface of Tachibana manifold \mathring{M} .

Let us put

$$\sqrt{N} = \frac{\%}{\xi},\tag{3.12}$$

$$\sqrt{X} = \phi X - \eta(X).N, \qquad (3.13)$$

where ξ^0 is extension of ξ from M to NP. Differentiating equation (3.12) and (3.13) with respect to connection ∇^0 along the direction ∇^0 and using equation (3.6) and (3.7) and comparing tangential part, we can easily get

$$-\phi(AX) = \nabla_X \xi, \tag{3.14}$$

$$H(X,Y)\xi = (\nabla_X \phi)Y + \eta(Y).A(X). \tag{3.15}$$

Comparing equations (3.14) and (2.9), we get

$$AX = -X + \eta(AX)\xi + \eta(X)\xi. \tag{3.16}$$

Contracting above equation

$$tr(A) = -2n + \eta(A(\xi)).$$
 (3.17)

Also from (3.16), we have

$$A(\xi) = \eta(A\xi).\xi = (tr(A) + 2n)\xi$$
, (3.18)

from (3.16) and (3.18), we get

$$A(X) = -X + (tr A + zn + 1) \eta(X).\xi, \tag{3.19}$$

i.e.

$$A(X) = -X + \lambda \cdot \eta(X) \cdot \xi, \qquad (3.20)$$

where

$$\lambda = tr(A) + zn + 1. \tag{3.21}$$

We have some more common results. The Weyl conformal curvature tensor of a (2n + 1)-dimensional Riemannian manifold is given as

$$C(X,Y)Z = R(X,Y)Z - \frac{1}{2n-1} \{ Ric(Y,Z)X - Ric(X,Z)Y + g(Y,Z)R(X) \}$$

$$-g(X,Z)RY\} + \frac{r}{2n(2n-1)}[g(Y,Z)X - g(X,Z)Y], \quad (3.22)$$

$$(R(X,Y).H)(U,V) = -H(R(X,Y)U,V) - H(U,R(X,Y)V),$$
 (3.23)

$$(C(X,Y).H)(U,V) = -H(C(X,Y)U,V) - H(U,C(X,Y)V),$$
 (3.24)

$$Q(g,h)(U,V;X,Y) = -H((X \land Y)U,V) - H(U,(X \land Y)V), \tag{3.25}$$

where X, Y, U, V are tangent vector fields to M and $X \wedge Y$ is an endomorphism defined as

$$(X \wedge Y)Z = g(Y,Z)X - g(X,Z)Y.$$
 (3.26)

4. Properties of Semi-parallel, Pseudo-parallel and Weyl Semi-parallel Hypersurfaces

Theorem 4.1. Let M be a para-Sasakian hypersurface of a Tachibana manifold M. Then M is semi-parallel if and only if it is totally umbilical with negative unit mean curvature.

Proof. Let *M* is semi-parallel, then we have

$$R(X, H).H = 0$$

i.e.
$$(R(X,Y).H)(U,V) = 0.$$

i.e.
$$-g(R(X,Y)U,AV) - g(AU,R(X,Y)V) = 0.$$

Using (3.20) in above equation, we get

$$\lambda.\eta(V).g(R(X,Y)U,\xi) + \lambda.\eta(U).g(R(X,Y)V,\xi) = 0.$$

Put $U = \xi$ in above equation

$$\lambda.g(R(X,Y)V,\xi) = 0 \qquad \Rightarrow \qquad \lambda R(X,Y)\xi = 0$$

$$\Rightarrow \qquad \lambda.S(Y,\xi) = 0 \qquad \Rightarrow \qquad \lambda.2n.\xi = 0$$

$$\Rightarrow \qquad \lambda = 0,$$

then from equation (3.20), we get

$$AX = -X$$
 or $A = -I$

from above equation, we get

$$g(AX, Y) = -g(X, Y),$$
 i.e. $H(X, Y) = -g(X, Y).$

Therefore *M* is totally umbilical with negative unit mean curvature.

By reversing the above steps, we can easily get the converse part of the theorem.

Theorem 4.2. Let M is a para-Sasakian hypersurface of a Tachibana manifold \mathring{M} . Then M is pseudo-parallel with $L_H \neq 1$ if and only if it is totally umbilical with negative unit mean curvature.

Proof. From equation (3.25) and (3.26), we have

$$Q(g,H)(U,V,X,Y) = -g(Y,U)H(X,V) + g(X,U)H(Y,V) - g(Y,V).H(X,U) + g(X,V)H(Y,U).$$

Using (3.20) in above, we get

$$\begin{split} Q(g,H)(U,V;X,Y) = & \lambda \left[-g(Y,U)\eta(X)\eta(V) + g(X,U)\eta(Y)\eta(V) \right. \\ & \left. -g(Y,V)\eta(X)\eta(U) + g(X,V)\eta(Y)\eta(U) \right]. \end{split}$$

Let the hypersurface M is pseudo-parallel, then we have

$$R.H = L_H.Q(g, H).$$

Using (4.2) in above equation, we get

$$\begin{split} \lambda[\eta(V).g(R(X,Y)U,\xi) + \eta(U).g(R(X,Y)V,\xi)] &= \lambda L_H[-g(Y,U)\eta(X)\eta(V) \\ &+ g(X,U)\eta(Y)\eta(V) - g(Y,V)\eta(X)\eta(U) + g(X,V)\eta(Y)\eta(U)]. \end{split}$$

Put $U = \xi$ in above equation, we get

$$\lambda [L_H - 1][-g(Y, V)\eta(X) + g(X, V)\eta(Y)] = 0.$$

Since $L_H \neq 1$, $\therefore \lambda = 0$, then from equation (3.20), we get

$$AX = -X$$
 or $A = -I$ \Rightarrow $H(X,Y) = -g(X,Y)$

which shows that hypersurface M is totally umbilical with negative unit mean curvature.

Conversely, let the hypersurface 'M' is totally umbilical then by previous theorem it is semi-parallel. We also know that semi-parallel hypersurfaces are pseudo-parallel. This proves the converse part.

Theorem 4.3. Let M be a para-Sasakian hypersurface of a Tachibana manifold M. Then M is Weyl semi-parallel if and only if it is an η — Einstein manifold or it is totally umbilical with negative unit mean curvature.

Proof. Let the hypersurface *M* is Weyl semi-parallel, i.e.

C.H = 0

i.e.
$$(C(X,Y).H)(U,V) = 0$$

i.e.
$$-H(C(X,Y)U,V)-H(U,C(X,Y)V)=0$$

i.e.
$$g(C(X,Y)U,AV)+g(AU,C(X,Y)V)=0.$$

Using (3.20) in above equation, we get

$$-g(C(X,Y)U,V) + \lambda \eta(V)g(C(X,Y)U,\xi - g(C(X,Y)V,U)$$

$$+ \lambda \eta(U)g(C(X,Y)V,\xi) = 0$$

$$\Rightarrow \quad \lambda[\eta(V)g(C(X,Y)U,\xi) + \eta(U)g(C(X,Y)V,\xi)] = 0.$$

Put $U = \xi$ in above equation, we get

$$\lambda g(C(X,Y)V,\xi) = 0, \tag{4.3}$$

then we have either $\lambda=0$ or $g(C(X,Y)V,\xi)=0$. If $\lambda=0$, then hypersurface M is totally umbilical with unit negative mean curvature and if $g(C(X,Y)V,\xi)=0$, then by equation (2.14) and (3.22), we get

$$\begin{split} 0 = & \Big(1 + \frac{r}{2n(2n-1)}\Big)(g(Y,V)\eta(X) - g(X,V)\eta(Y)) \\ & - \frac{1}{2n-1}[S(Y,V)\eta(X) - S(X,V)\eta(Y) - 2ng(Y,V)\eta(X) + 2ng(X,V)\eta(Y)]. \end{split}$$

Put $X = \xi$ in above equation, we get

$$S(Y,U) = \left(\frac{r}{2n} + 1\right)g(Y,V) + \left(2n + 1 + \frac{r}{2n}\right)\eta(Y)\eta(V), \tag{4.4}$$

which shows that 'M' is an η -Einstein manifold.

Conversely if the hypersurface M is totally umbilical then we have $\lambda = 0$. Also,

$$(C(X,Y).H)(U,V) = \lambda [\eta(V).g(C(X,Y)U,\xi) + \eta(U)g(C(X,Y)V,\xi)].$$
 (4.5)

Hence, we get C.H = 0, i.e. M is Weyl semi-parallel and if hypersurface M is η – Einstein then by equation (4.4) and (3.22), we get

$$g(C(X,Y)U,\xi) = 0,$$
 (4.6)

from (4.5) and (4.6), we get

C.H = 0

i.e. M is Weyl semi-parallel.

Theorem 4.4. Let M be a para-Sasakian hypersurface of a Tachibana manifold M. Then M satisfy $C.H = L_H Q(g,H)$ if and only if either M is totally umbilical or $L_H = 0$ on M.

Proof. Let the hypersurface *M* satisfy

$$C.H = L_HQ(g, H).$$

Using (4.2) and (4.5) in above equation, we get

$$\lambda[\eta(V)g(C(X,Y)U,\xi) + \eta(U).g(c(X,Y).V,\xi)] = L_{H}.\lambda[-g(Y,U).\eta(X)\eta(V) + g(X,U)\eta(Y)\eta(V) - g(Y,V).\eta(X).\eta(U) + g(X,V)\eta(Y).\eta(U)]. \tag{4.7}$$

Put $\,V=\xi\,$ in above equation

$$\lambda[g(C(X,Y)U,\xi] = L_H \lambda[-g(Y,U).\eta(X) + g(X,U)\eta(Y)].$$

Using (3.22) in above and then contracting it with respect to X, we get

$$\lambda.S(Y,U) = \lambda \left(\frac{r}{2n} + 1 + L_H(2n-1)\right) g(Y,U)$$

$$+ \lambda \left(2n + 1 + \frac{r}{2n} + L_H(2n-1)\right) \eta(Y).\eta(U).$$
(4.8)

From (4.8), we get either $\lambda = 0$, or

$$S(Y,U) = \left(\frac{r}{2n} + 1 + L_{H}(2n-1)\right)g(Y,U) + \left(2n+1 + \frac{r}{2n} + L_{H}(2n-1)\right)\eta(Y).\eta(U).$$
(4.9)

If $\lambda = 0$, then M is totally umbilical with negative unit mean curvature otherwise comparing (4.9) with (4.4), we get

$$L_{\rm H} = 0$$
.

References

- [1] J. Deprez: Semi-parallel surfaces in Euclidean space, J. Geom., 25 (1985), 192-200.
- J. Deprez: Semi-parallel hypersurfaces, Rend. Sem. Mat. Univers Politech. Torino, 44 (1986), 303-316.
- [3] Ü Lumiste: Semi-symmetric submanifolds as the second order envelope of symmetric submanifolds, Proc. Estonian Acad. Sci. Phy. Math., 39 (1990), 1-8.
- [4] F. Dillen: Semi-parallel hypersurfaces of real space form, Israel J. Math., 75 (1991), 193-202.
- [5] A. C. Asperti, G. A. Lobos and F. Mercuri: Pseudo-parallel immersion in space forms, Math. Contemp., 17 (1999), 59-70.
- [6] C. Özgür: Submanifolds satisfying some curvature conditions imposed on the Weyl-tensor, Bull. Austral. Math. Soc., 67 (1) (2003), 95-101.
- [7] R. S. Mishra: Structures on differentiable manifold and their applications, Chandrama Prakashan, Allahabad, 1984.